offline ai chat coding gui


LLamaGPT AI GUI Rakyat Edition VS ChatGPT Gratisan
📌 Model yang sudah diuji / Tested Model GGUF
NoNama Model GGUFUkuran QuantRAM yang DigunakanOS & Kondisi TambahanStatus GUI
1luna-ai-llama2-uncensored.Q4_0.ggufQ4_0±11.6 GB of 16GBWindows 11 pro 24H2 + Office 2024 + music & anime videoStable & Smooth
2Meta-Llama-3-8B-Instruct.Q8_0.ggufQ8_0±10.8 GB of 16GBWindows 11 pro 24H2 + Office 2024 + music & anime videoStable & Smooth
3WizardLM-13B-Uncensored.Q5_K_M.ggufQ5_K_M12,6 GB of 16 GBWindows 11 pro 24H2 + Office 2024Tested + Stable & Smooth
4wizardcoder-python-13b-v1.0.Q5_K_M.ggufQ5_K_M12,6 GB of 16 GBWindows 11 pro 24H2 + Office 2024Tested + Stable & Smooth
5All 7BQ4_K_M≤11.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + music video 720pStable & Smooth
6All 13B (Kecuali Yi 13B)Q4_K_M≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + music video 720pStable & Smooth
7deepseek-coder-7b-instruct-v1.5-Q8_0.ggufQ8_010.8 GB of 16GBWindows 11 pro 24H2 + Office 2024Stable & Smooth
8deepseek-coder-1.3b-instruct.Q4_0.ggufQ4_04 GB of 16GBWindows 11 pro 24H2 + Office 2024Stable & Smooth
9codellama-13b.Q6_K.ggufQ6_K≤15.4 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad++Stable & Smooth
10starcoder2-15b-Q5_K_M (1).ggufQ5_K_M≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad++Stable & Smooth
11DeepSeek-Coder-V2-Lite-Instruct-Q5_K_M.ggufQ5_K_M≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad++Stable & Smooth
12Llama-3-16B.Q5_K_M.ggufQ5_K_M≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad++Stable & Smooth
13orcamaidxl-17b-32k.Q5_K_M.ggufQ5_K_M≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + ChromeStable & Smooth
14llava-v1.5-13b-Q8_0.ggufQ8_0≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad + Notepad++Stable & Smooth
15InternVL3-8B-Instruct-UD-Q8_K_XL.ggufQ8_K_XL≤14.2 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad + Notepad++Stable & Smooth
16InternVL3-14B-Instruct-Q6_K.ggufQ6_K≤15.5 GB of 16GBWindows 11 pro 24H2 + Office 2024 + Chrome + Notepad + Notepad++Stable & Smooth
📌 AI Memory (ID)

Aspek ChatGPT Gratisan Offline AI Memory Custom
Tipe memory Ephemeral session memory → hanya konteks percakapan saat ini. Persistent memory → bisa disimpan ke TXT, DOCX, database, atau format GGUF.
Batas konteks ±3.000–4.000 token per sesi (~2–3 halaman teks panjang). Tidak ada batas teoretis selain kapasitas hardisk. Bisa ratusan ribu baris teks, ratusan MB bahkan GB.
Persistence Hilang saat tab ditutup atau sesi selesai. Selalu tersimpan di file lokal, bisa dipanggil kapan saja, tetap ada meski PC mati.
Kontrol User tidak bisa memilih atau menambah memory jangka panjang. User bebas menambah, menghapus, atau mengupdate memory sesuai kebutuhan. Bisa dikustomisasi penuh.
Privasi Tergantung server OpenAI → data dikirim online. 100% offline → semua data tetap di PC sendiri.
Kapasitas “hard limit” Sangat terbatas → model harus melupakan bagian awal percakapan saat token habis. Hanya dibatasi storage → bisa diisi topik ribuan halaman atau dataset besar, termasuk “topik terlarang” kalau mau.
Fleksibilitas Sedikit → cuma bisa mengandalkan konteks aktif. Sangat tinggi → bisa buat index, search, recall, role mode, chunking, bahkan resume panjang.

📌 AI Memory (EN)
Aspect Free ChatGPT Offline Custom AI Memory
Memory Type Ephemeral session memory → only stores the current conversation context. Persistent memory → can be saved to TXT, DOCX, databases, or GGUF format.
Context Limit ±3,000–4,000 tokens per session (~2–3 long text pages). No theoretical limit besides hard drive capacity. Can store hundreds of thousands of text lines, hundreds of MBs or even GBs.
Persistence Lost when the tab is closed or session ends. Always saved locally, can be recalled anytime, remains even if the PC is off.
Control User cannot select or add long-term memory. User can freely add, delete, or update memory as needed. Fully customizable.
Privacy Depends on OpenAI servers → data sent online. 100% offline → all data stays on your PC.
Hard Capacity Limit Very limited → model must forget earlier parts of conversation when tokens run out. Only limited by storage → can hold thousands of pages or large datasets, including “restricted topics” if desired.
Flexibility Limited → only relies on active context. Very high → supports indexing, searching, recall, role modes, chunking, and long resume functions.

📊 Perbandingan Model GGUF untuk Analisis Data
Model RAM Usage (estimasi) Kecepatan (tokens/s) Kualitas Reasoning (1–5) Catatan
mistral-7b-instruct-v0.3-q4_k_m ±4–5 GB 🔹 Cepat (20–30 tok/s) ⭐⭐⭐ (3/5) Ringan, cocok buat data text/csv sederhana.
Llama-3-16B.Q5_K_M ±12–14 GB 🔹 Sedang (8–12 tok/s) ⭐⭐⭐⭐ (4/5) Reasoning bagus, pas buat analisis tabel besar.
InternVL3-8B-Instruct-UD-Q8_K_XL ±8–9 GB 🔹 Sedang (12–18 tok/s) ⭐⭐⭐⭐ (4/5) Multimodal support, bagus untuk teks+visual.
InternVL3-14B-Instruct-UD-Q6_K_XL ±12–13 GB 🔹 Lebih lambat (6–10 tok/s) ⭐⭐⭐⭐⭐ (5/5) Analisis kompleks kuat, lebih stabil di reasoning tabel.
Qwen2.5-Omni-7B-UD-Q8_K_XL ±7–8 GB 🔹 Cepat (18–25 tok/s) ⭐⭐⭐⭐ (4/5) Multimodal + reasoning lumayan rapi.
Meta-Llama-3-8B-Instruct.Q8_0 ±7–8 GB 🔹 Sedang (15–20 tok/s) ⭐⭐⭐⭐ (4/5) Balanced, lumayan smooth buat dokumen Excel besar.
llama-2-13b-chat.Q4_K_M ±8–9 GB 🔹 Sedang (12–16 tok/s) ⭐⭐⭐ (3/5) Masih lumayan, tapi kalah akurat dibanding Llama 3.
llava-v1.5-13b-Q8_0 ±9–10 GB 🔹 Lambat (8–12 tok/s) ⭐⭐⭐⭐ (4/5) Kuat di multimodal, pas buat CSV + chart/gambar.
llava-v1.6-vicuna-13b.Q6_K ±10–11 GB 🔹 Lambat (7–11 tok/s) ⭐⭐⭐⭐ (4/5) Versi lebih baru, multimodal lebih rapi.

📊 Comparison Table of GGUF Models for Data Analysis
Model (GGUF) RAM Usage (16GB System) Speed (Excel/CSV Processing) Reasoning Quality (Data Insights) Best Use Case
LLaMA-2 7B GGUF 🟢 ~6–7GB ⚡ Fast (lightweight) 🟡 Basic – handles simple analysis, summaries Quick reports & simple stats
Mistral 7B GGUF 🟢 ~6–7GB ⚡⚡ Very Fast 🟢 Better reasoning than LLaMA-2 7B Exploratory data analysis, light BI
LLaMA-2 13B GGUF 🟡 ~12–13GB ⚡ Medium 🟢🟢 Strong reasoning, more accurate correlations Deeper insights & medium datasets
Mixtral 8x7B GGUF (MoE) 🟡 ~10–12GB (active params only) ⚡⚡ Good speed for large model 🟢🟢 Excellent logical reasoning Complex trend analysis & forecasting
LLaMA-3 8B GGUF 🟢 ~7–8GB ⚡⚡ Fast 🟢 Stronger logical flow than LLaMA-2 Balanced – business analysis & predictions
LLaMA-3 70B GGUF 🔴 ~40–48GB (not practical for 16GB) ⚠️ Very slow/offloading needed 🟢🟢🟢 Near-human reasoning Enterprise-scale BI (requires big GPU/cluster)


0 komentar:

Posting Komentar